Adaptive Formation of Pareto Front in Evolutionary Multi-objective Optimization

نویسندگان

  • Özer Ciftcioglu
  • Michael S. Bittermann
چکیده

Optimization is an important concept in science and engineering. Traditionally, methods are developed for unconstrained and constrained single objective optimization tasks. However, with the increasing complexity of optimization problems in the modern technological real world problems, multi-objective optimization algorithms are needed and being developed. With the advent of evolutionary algorithms in the last decades, multi-objective evolutionary algorithms (MOEAs) are extensively being investigated for solving associated optimization problems, e.g. (Deb et al., 2000, Zitzler & Thiele, 1999, Yao et al., 1999, Eiben et al., 1999). An updated survey of Ga-based MOEAs is given by (Coello, 1999). Evolutionary algorithms are particularly suitable for this, since they evolve simultaneously a population of potential solutions. These solutions are investigated in non-dominated solution space so that the optimized solutions in a multi-objective functions space form a front which is known as Pareto surface or front. Obtaining this simultaneous solution front in a single run is an appealing property that it is the incentive for a fast growing interest on MOEAs in the last decade. Although Pareto front is an important concept, its formation is not straightforward since the strict search of non-dominated regions in the multi-objective solution space prematurely excludes some of the potential solutions that results in an aggregated solutions in this very space. This means Pareto surface is not fully developed and the diversity of the solutions on the Pareto front is not fully exercised. Conventionally, non-dominated solutions with many objectives are usually low in number making the selection pressure toward the Pareto front also low, with aggregated solutions in the Pareto dominance-based MOEA algorithms (Sato, 2007). The purpose of this research is to investigate this issue and provide effective solutions with fast convergence together with diversity of solutions is maintained on the Pareto front. This goal has already attracted attention in the literature (Laumanns et al., 2002). This work addresses this issue with a novel concept of adaptive formation of Pareto front. This is demonstrated with an application from the domain of architectural design. The method is based on relaxed dominance domains, which basically refer to a degree of relaxation of the dominance in the terminology of MOEAs. In this book-chapter contribution, the relaxed dominance concept is explicitly described and applied. The organisation of this chapter is as follows. Section two describes the relaxed dominance concept. Section three describes the adaptive formation of Pareto front in a design application. This is followed by the conclusions in section four. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

Multi-objective Reconfiguration of Distribution Network Using a Heuristic Modified Ant Colony Optimization Algorithm

In this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. Two objective functions, real power loss and energy not supplied index (ENS), were utilized. Multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012